Logo

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Small book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by

Publisher: arXiv
Number of pages: 96

Description:
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: General Relativity Without CalculusGeneral Relativity Without Calculus
by - Springer
This book was written as a guide for a one week course aimed at exceptional students in their final years of secondary education. The course was intended to provide a quick but nontrivial introduction to Einstein's general theory of relativity.
(10580 views)
Book cover: Gravitational WavesGravitational Waves
by - arXiv
Gravitational-wave (GW) science has entered a new era. Theoretically, the last years have been characterized by numerous major advances. These lectures are envisioned to be an introductory, basic course in gravitational-wave physics.
(11558 views)
Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(18371 views)
Book cover: Gravitational Waves and Black Holes: an Introduction to General RelativityGravitational Waves and Black Holes: an Introduction to General Relativity
by - arXiv
General relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves and stationary fields of black holes are discussed.
(12529 views)