Logo

An Introduction to Many Worlds in Quantum Computation

Small book cover: An Introduction to Many Worlds in Quantum Computation

An Introduction to Many Worlds in Quantum Computation
by

Publisher: arXiv
Number of pages: 38

Description:
The interpretation of quantum mechanics is an area of increasing interest to many working physicists. This paper introduces one interpretation of quantum mechanics, a modern 'many-worlds' theory, from the perspective of quantum computation. Reasons for seeking to interpret quantum mechanics are discussed, then the specific 'neo-Everettian' theory is introduced and its claim as the best available interpretation defended.

Home page url

Download or read it online for free here:
Download link
(340KB, PDF)

Similar books

Book cover: On the Foundations of Quantum TheoryOn the Foundations of Quantum Theory
by - arXiv.org
We draw systematic parallels between the measurement problem in quantum mechanics and the information loss problem in black holes. Then we proceed to propose a solution of the former along the lines of the solution of the latter ...
(4895 views)
Book cover: Circuit QEDCircuit QED
by - arXiv
These notes aim to provide a non-expert introduction to the field of circuit QED, to give a basic appreciation of the promise and challenges of the field, along with a number of key concepts that will be useful for the reader who is new to the field.
(8501 views)
Book cover: Relativistic Quantum DynamicsRelativistic Quantum Dynamics
by
A non-traditional perspective on space, time, particles, fields, and action-at-a-distance. This book is an attempt to build a consistent relativistic quantum theory of interacting particles. The developed theory is applied to realistic physical objects.
(16407 views)
Book cover: Lecture Notes in Quantum MechanicsLecture Notes in Quantum Mechanics
by - arXiv
These lecture notes cover undergraduate textbook topics and also additional advanced topics: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; etc.
(16613 views)