Logo

Quantum Spin Systems on Infinite Lattices

Small book cover: Quantum Spin Systems on Infinite Lattices

Quantum Spin Systems on Infinite Lattices
by

Publisher: arXiv
Number of pages: 90

Description:
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites. Such systems can be used, for example, to model some materials in condensed matter physics or lattice gases.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Mathemathical Methods of Theoretical PhysicsMathemathical Methods of Theoretical Physics
by - Edition Funzl
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(11079 views)
Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(9077 views)
Book cover: Tensor Techniques in Physics: a concise introductionTensor Techniques in Physics: a concise introduction
by - Learning Development Institute
Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).
(13565 views)
Book cover: Differential Equations of Mathematical PhysicsDifferential Equations of Mathematical Physics
by - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(9311 views)