Logo

Abel's Theorem and the Allied Theory

Large book cover: Abel's Theorem and the Allied Theory

Abel's Theorem and the Allied Theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 140675000X
Number of pages: 712

Description:
This classic book, written in 1897, covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today, and some of the most exciting ideas from theoretical physics draw on work presented here.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Modular Functions and Modular FormsModular Functions and Modular Forms
by
This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.
(13620 views)
Book cover: Lectures on Torus Embeddings and ApplicationsLectures on Torus Embeddings and Applications
by - Tata Institute of Fundamental Research
Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.
(11392 views)
Book cover: Algorithms in Real Algebraic GeometryAlgorithms in Real Algebraic Geometry
by - Springer
The monograph gives a detailed exposition of the algorithmic real algebraic geometry. It is well written and will be useful both for beginners and for advanced readers, who work in real algebraic geometry or apply its methods in other fields.
(19317 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(14075 views)