**Ample Subvarieties of Algebraic Varieties**

by Robin Hartshorne

**Publisher**: Springer 1970**ISBN/ASIN**: 3540051848**Number of pages**: 273

**Description**:

These notes are an enlarged version of a three-month course of lectures I gave at the Tata Institute of Fundamental Research. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

Download or read it online for free here:

**Download link**

(10MB, PDF)

## Similar books

**Modular Functions and Modular Forms**

by

**J. S. Milne**

This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.

(

**9201**views)

**Lectures on Curves on Rational and Unirational Surfaces**

by

**Masayoshi Miyanishi**-

**Tata Institute of Fundamental Research**

From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

(

**5806**views)

**An Introduction to Semialgebraic Geometry**

by

**Michel Coste**-

**Universite de Rennes**

Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.

(

**9474**views)

**Algebraic Curves: an Introduction to Algebraic Geometry**

by

**William Fulton**-

**Benjamin**

These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.

(

**11593**views)