Algorithms for Reinforcement Learning
by Csaba Szepesvari
Publisher: Morgan and Claypool Publishers 2009
ISBN/ASIN: 1608454924
Number of pages: 98
Description:
In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books

by Alexander Rakhlin, Karthik Sridharan - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(6148 views)

by Kevin Patrick Murphy - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(3068 views)

by J. Peters, D. Janzing, B. Schölkopf - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(5504 views)

by Carl E. Rasmussen, Christopher K. I. Williams - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(26913 views)