**Algebraic and Geometric Methods in Enumerative Combinatorics**

by Federico Ardila

**Publisher**: arXiv 2014**Number of pages**: 143

**Description**:

The guiding principle was to focus on algebraic and geometric techniques that are useful towards the solution of enumerative problems. The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Notes on Combinatorics**

by

**Peter J. Cameron**-

**Queen Mary, University of London**

Contents: Subsets and binomial coefficients; Selections and arrangements; Power series; Recurrence relations; Partitions and permutations; The Principle of Inclusion and Exclusion; Families of sets; Systems of distinct representatives; etc.

(

**5774**views)

**Combinatory Analysis**

by

**Percy A. MacMahon**-

**Cambridge University Press**

The object of this work is to present an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine ...

(

**3367**views)

**Matroid Decomposition**

by

**Klaus Truemper**-

**Leibniz**

Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. The exposition is clear and simple.

(

**6033**views)

**Combinatorial Maps: Tutorial**

by

**Dainis Zeps**-

**Latvian University**

Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...

(

**3635**views)