**Algebraic and Geometric Methods in Enumerative Combinatorics**

by Federico Ardila

**Publisher**: arXiv 2014**Number of pages**: 143

**Description**:

The guiding principle was to focus on algebraic and geometric techniques that are useful towards the solution of enumerative problems. The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Combinatorial Theory**

by

**Gian-Carlo Rota**

In 1998, Gian-Carlo Rota gave his famous course at MIT. John N. Guidi took notes in a verbatim manner conveying the substance of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

(

**736**views)

**Applied Combinatorics**

by

**Mitchel T. Keller, William T. Trotter**-

**Georgia Institute of Technology**

The purpose of the course is to give students a broad exposure to combinatorial mathematics, using applications to emphasize fundamental concepts and techniques. Our approach to the course is to show students the beauty of combinatorics.

(

**2875**views)

**Combinatory Analysis**

by

**Percy A. MacMahon**-

**Cambridge University Press**

The object of this work is to present an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine ...

(

**1522**views)

**Enumerative Combinatorics: Volume 1**

by

**Richard P. Stanley**-

**MIT**

The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.

(

**1327**views)