**Knot Diagrammatics**

by Louis H. Kauffman

**Publisher**: arXiv 2004**Number of pages**: 107

**Description**:

This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**13825**views)

**Combinatorial Knot Theory**

by

**Louis H. Kauffman**-

**University of Illinois at Chicago**

This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.

(

**6340**views)

**The Geometry and Topology of Braid Groups**

by

**Jenny Wilson**-

**University of Michigan**

Contents: Five definitions of the braid group; The topology of Fn(C); The integral cohomology of the pure braid group; Generalizations of PBn and their cohomology; Transfer and twisted coefficients; Stability in the cohomology of braid groups; etc.

(

**1068**views)

**Math That Makes You Go Wow**

by

**M. Boittin, E. Callahan, D. Goldberg, J. Remes**-

**Ohio State University**

This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.

(

**11227**views)