**The Geometry of General Relativity**

by Tevian Dray

**Publisher**: Oregon State University 2014**Number of pages**: 158

**Description**:

The manuscript emphasizes the use of differential forms, rather than tensors, which are barely mentioned. The focus is on the basic examples, namely the Schwarzschild black hole and the Friedmann-Robertson-Walker cosmological models. The material should be suitable for both advanced undergraduates and beginning graduate students in both mathematics and physics.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Advanced General Relativity**

by

**Sergei Winitzki**-

**Google Sites**

Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.

(

**11507**views)

**Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity**

by

**Joseph C. Kolecki**-

**Glenn Research Center**

Tensor analysis is useful because of its great generality and compact notation. This monograph provides a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies.

(

**10315**views)

**Mass and Angular Momentum in General Relativity**

by

**J.L. Jaramillo, E. Gourgoulhon**-

**arXiv**

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.

(

**8818**views)

**Lecture Notes on General Relativity**

by

**Matthias Blau**-

**Universitaet Bern**

The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.

(

**12413**views)