Logo

An Introduction to Statistical Learning

Large book cover: An Introduction to Statistical Learning

An Introduction to Statistical Learning
by

Publisher: Springer
ISBN/ASIN: 1461471370
ISBN-13: 9781461471370
Number of pages: 440

Description:
This book provides an introduction to statistical learning methods. It is aimed for upper level undergraduate students, masters students and Ph.D. students in the non-mathematical sciences. The book also contains a number of R labs with detailed explanations on how to implement the various methods in real life settings, and should be a valuable resource for a practicing data scientist.

Home page url

Download or read it online for free here:
Download link
(8.6MB, PDF)

Similar books

Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(6862 views)
Book cover: A Survey of Statistical Network ModelsA Survey of Statistical Network Models
by - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(3890 views)
Book cover: Bayesian Reasoning and Machine LearningBayesian Reasoning and Machine Learning
by - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(15708 views)
Book cover: Reinforcement Learning: An IntroductionReinforcement Learning: An Introduction
by - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(19862 views)