Logo

Differential Geometry: A First Course in Curves and Surfaces

Small book cover: Differential Geometry: A First Course in Curves and Surfaces

Differential Geometry: A First Course in Curves and Surfaces
by

Publisher: University of Georgia
Number of pages: 127

Description:
Contents: Curves (Examples, Arclength Parametrization, Local Theory: Frenet Frame, Some Global Results), Surfaces: Local Theory (Parametrized Surfaces and the First Fundamental Form, The Gauss Map and the Second Fundamental Form, The Codazzi and Gauss Equations, Covariant Differentiation, Parallel Translation, and Geodesics) Surfaces: Further Topics (Holonomy and the Gauss-Bonnet Theorem, Hyperbolic Geometry, Surface Theory with Differential Forms, Calculus of Variations and Surfaces of Constant Mean Curvature).

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Notes on Differential GeometryNotes on Differential Geometry
by - Victoria University of Wellington
In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.
(5453 views)
Book cover: A Course Of Differential GeometryA Course Of Differential Geometry
by - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(1614 views)
Book cover: Differential Geometry: Lecture NotesDifferential Geometry: Lecture Notes
by - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(6380 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(15777 views)