Logo

Differential Geometry: A First Course in Curves and Surfaces

Small book cover: Differential Geometry: A First Course in Curves and Surfaces

Differential Geometry: A First Course in Curves and Surfaces
by

Publisher: University of Georgia
Number of pages: 127

Description:
Contents: Curves (Examples, Arclength Parametrization, Local Theory: Frenet Frame, Some Global Results), Surfaces: Local Theory (Parametrized Surfaces and the First Fundamental Form, The Gauss Map and the Second Fundamental Form, The Codazzi and Gauss Equations, Covariant Differentiation, Parallel Translation, and Geodesics) Surfaces: Further Topics (Holonomy and the Gauss-Bonnet Theorem, Hyperbolic Geometry, Surface Theory with Differential Forms, Calculus of Variations and Surfaces of Constant Mean Curvature).

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: A Course Of Differential GeometryA Course Of Differential Geometry
by - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(2215 views)
Book cover: Lectures on Differential GeometryLectures on Differential Geometry
by - University of Ottawa
This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.
(7321 views)
Book cover: Topics in Differential GeometryTopics in Differential Geometry
by - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(7212 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(16660 views)