Logo

Learning Deep Architectures for AI

Large book cover: Learning Deep Architectures for AI

Learning Deep Architectures for AI
by

Publisher: Now Publishers
ISBN/ASIN: 1601982941
ISBN-13: 9781601982940
Number of pages: 130

Description:
This monograph discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Machine Learning: A Probabilistic PerspectiveMachine Learning: A Probabilistic Perspective
by - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(2121 views)
Book cover: Gaussian Processes for Machine LearningGaussian Processes for Machine Learning
by - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(25995 views)
Book cover: Lecture Notes in Machine LearningLecture Notes in Machine Learning
by - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(8069 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(20557 views)