Logo

Metric and Topological Spaces

Small book cover: Metric and Topological Spaces

Metric and Topological Spaces
by

Publisher: University of Cambridge
Number of pages: 109

Description:
Contents: Preface; What is a metric?; Examples of metric spaces; Continuity and open sets for metric spaces; Closed sets for metric spaces; Topological spaces; Interior and closure; More on topological structures; Hausdorff spaces; Compactness; Products of compact spaces; Compactness in metric spaces; Connectedness; The language of neighbourhoods; Final remarks and books.

Home page url

Download or read it online for free here:
Download link
(620KB, PDF)

Similar books

Book cover: Homeomorphisms in AnalysisHomeomorphisms in Analysis
by - American Mathematical Society
This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.
(15037 views)
Book cover: Elementary TopologyElementary Topology
by - American Mathematical Society
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space.
(16067 views)
Book cover: Topology Without TearsTopology Without Tears
by
It provides a thorough grounding in general topology: introduction, topological spaces, the Euclidian topology, limit points, homeomorphisms, continuous mappings, metric spaces, compactness, finite products, countable products, Tychonoff's theorem.
(19467 views)
Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(61766 views)