**Metric and Topological Spaces**

by T. W. Körner

**Publisher**: University of Cambridge 2014**Number of pages**: 109

**Description**:

Contents: Preface; What is a metric?; Examples of metric spaces; Continuity and open sets for metric spaces; Closed sets for metric spaces; Topological spaces; Interior and closure; More on topological structures; Hausdorff spaces; Compactness; Products of compact spaces; Compactness in metric spaces; Connectedness; The language of neighbourhoods; Final remarks and books.

Download or read it online for free here:

**Download link**

(620KB, PDF)

## Similar books

**Elementary Topology**

by

**O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov**-

**American Mathematical Society**

This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space.

(

**10544**views)

**Real Variables: With Basic Metric Space Topology**

by

**Robert B. Ash**-

**Institute of Electrical & Electronics Engineering**

A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.

(

**54217**views)

**Point-Set Topology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

This is an introductory, one semester course on point-set topology and applications. Topics: topologies, separation axioms, connectedness, compactness, continuity, metric spaces. Intended for advanced undergraduate and beginning graduate students.

(

**3283**views)

**Topology**

by

**David Wilkins**-

**Trinity College, Dublin**

The lecture notes for course 212 (Topology), taught at Trinity College, Dublin. Topics covered: Limits and Continuity, Open and Closed Sets, Metric Spaces, Topological Spaces, Normed Vector Spaces and Functional Analysis, Topology in the Plane.

(

**6292**views)