**Convex Bodies and Algebraic Geometry**

by Tadao Oda

**Publisher**: Springer 1988**ISBN/ASIN**: 364272549X**ISBN-13**: 9783642725494**Number of pages**: 219

**Description**:

The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's.

Download or read it online for free here:

**Download link**

(21MB, PDF)

## Similar books

**Introduction to Algebraic Geometry**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology Bombay**

This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.

(

**5379**views)

**Algebraic Curves: an Introduction to Algebraic Geometry**

by

**William Fulton**-

**Benjamin**

These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.

(

**11075**views)

**Ample Subvarieties of Algebraic Varieties**

by

**Robin Hartshorne**-

**Springer**

These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

(

**3314**views)

**Mirror Symmetry**

by

**Cumrun Vafa, Eric Zaslow**-

**American Mathematical Society**

The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.

(

**8594**views)