**A Course Of Differential Geometry**

by John Edward Campbell

**Publisher**: Clarendon Press 1926**ISBN/ASIN**: B0043KO3RO**Number of pages**: 288

**Description**:

Table of contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; The minimal surface; Orthogonal surfaces; etc.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**12663**views)

**Differential Geometry Course Notes**

by

**Richard Koch**-

**University of Oregon**

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

(

**6738**views)

**Differential Geometry**

by

**Balazs Csikos**-

**Eötvös Loránd University**

Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.

(

**7743**views)

**Differential Geometry: A First Course in Curves and Surfaces**

by

**Theodore Shifrin**-

**University of Georgia**

Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).

(

**2418**views)