A Course Of Differential Geometry

A Course Of Differential Geometry

A Course Of Differential Geometry
by John Edward Campbell

Publisher: Clarendon Press 1926
Number of pages: 288

Table of contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; The minimal surface; Orthogonal surfaces; etc.

Home page url

Download or read it online here:
Download link
(multiple formats)

Similar books

Lectures on Differential GeometryLectures on Differential Geometry
by Wulf Rossmann - University of Ottawa
This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.
Notes on Differential GeometryNotes on Differential Geometry
by Matt Visser - Victoria University of Wellington
In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.
Topics in Differential GeometryTopics in Differential Geometry
by Peter W. Michor - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
Elementary Differential GeometryElementary Differential Geometry
by Gilbert Weinstein - UAB
These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.