**A Course Of Differential Geometry**

by John Edward Campbell

**Publisher**: Clarendon Press 1926**ISBN/ASIN**: B0043KO3RO**Number of pages**: 288

**Description**:

Table of contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; The minimal surface; Orthogonal surfaces; etc.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Elementary Differential Geometry**

by

**Gilbert Weinstein**-

**UAB**

These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.

(

**9140**views)

**Notes on Differential Geometry**

by

**Matt Visser**-

**Victoria University of Wellington**

In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.

(

**6794**views)

**Differential Geometry**

by

**Balazs Csikos**-

**Eötvös Loránd University**

Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.

(

**8651**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**17590**views)