Logo

Machine Learning and Data Mining: Lecture Notes

Small book cover: Machine Learning and Data Mining: Lecture Notes

Machine Learning and Data Mining: Lecture Notes
by

Publisher: University of Toronto
Number of pages: 134

Description:
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; Monte Carlo Methods; Principal Components Analysis; Lagrange Multipliers; Clustering; Hidden Markov Models; Support Vector Machines; AdaBoost.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Algorithms for Reinforcement LearningAlgorithms for Reinforcement Learning
by - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(8737 views)
Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(12886 views)
Book cover: Reinforcement Learning: An IntroductionReinforcement Learning: An Introduction
by - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(28620 views)
Book cover: Optimal and Learning Control for Autonomous RobotsOptimal and Learning Control for Autonomous Robots
by - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(6452 views)