**Combinatorial Maps: Tutorial**

by Dainis Zeps

**Publisher**: Latvian University 2007**Number of pages**: 61

**Description**:

Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation of combinatorial maps; Drawing of the graph corresponding to combinatorial map; Simple combinatorial maps and their drawings; Vertex split-merge operation; etc.

Download or read it online for free here:

**Download link**

(280KB, PDF)

## Similar books

**Combinatorial Theory**

by

**Gian-Carlo Rota**

In 1998, Gian-Carlo Rota gave his famous course at MIT. John N. Guidi took notes in a verbatim manner conveying the substance of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

(

**1017**views)

**Applied Combinatorics**

by

**S. E. Payne**-

**University of Colorado**

These notes deal with enumerative combinatorics. The author included some traditional material and some truly nontrivial material, albeit with a treatment that makes it accessible to the student. He derives a variety of techniques for counting.

(

**10351**views)

**Topics in Algebraic Combinatorics**

by

**Richard P. Stanley**-

**MIT**

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.

(

**4518**views)

**Enumerative Combinatorics: Volume 1**

by

**Richard P. Stanley**-

**MIT**

The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.

(

**1588**views)