Logo

Lecture Notes in Machine Learning

Small book cover: Lecture Notes in Machine Learning

Lecture Notes in Machine Learning
by

Publisher: Central Connecticut State University
Number of pages: 65

Description:
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning; Explanation-based Learning.

Download or read it online for free here:
Download link
(340KB, PDF)

Similar books

Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(10716 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(22736 views)
Book cover: Bayesian Reasoning and Machine LearningBayesian Reasoning and Machine Learning
by - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23065 views)
Book cover: Statistical Learning and Sequential PredictionStatistical Learning and Sequential Prediction
by - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(6901 views)