Logo

Current Developments in Algebraic Geometry

Large book cover: Current Developments in Algebraic Geometry

Current Developments in Algebraic Geometry
by

Publisher: Cambridge University Press
ISBN/ASIN: 052176825X
ISBN-13: 9780521768252
Number of pages: 438

Description:
An introductory panorama of current progress in the field, addressed to both beginners and experts. This volume offers expository overviews of the state of the art in many areas of algebraic geometry. Prerequisites are kept to a minimum, making the book accessible to a broad range of mathematicians.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Algebraic Geometry over the Complex NumbersAlgebraic Geometry over the Complex Numbers
by - Purdue University
Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author maintains a reasonable balance between rigor and intuition; so it retains the informal quality of lecture notes.
(8001 views)
Book cover: Noncommutative Algebraic GeometryNoncommutative Algebraic Geometry
by - Cambridge University Press
This book provides an introduction to some of the most significant topics in this area, including noncommutative projective algebraic geometry, deformation theory, symplectic reflection algebras, and noncommutative resolutions of singularities.
(563 views)
Book cover: Strings and GeometryStrings and Geometry
by - American Mathematical Society
This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.
(8013 views)
Book cover: Introduction to Stokes StructuresIntroduction to Stokes Structures
by - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(5000 views)