Logo

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Small book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by

Publisher: arXiv
Number of pages: 96

Description:
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Gravitational Waves, Sources, and DetectorsGravitational Waves, Sources, and Detectors
by - arXiv
Notes of lectures for graduate students, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons.
(5844 views)
Book cover: Lecture Notes on General RelativityLecture Notes on General Relativity
by - University of California
Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.
(11020 views)
Book cover: Mass and Angular Momentum in General RelativityMass and Angular Momentum in General Relativity
by - arXiv
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.
(5318 views)
Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(13649 views)