**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by Christian Heinicke, Friedrich W. Hehl

**Publisher**: arXiv 2015**Number of pages**: 96

**Description**:

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**Gravitational Waves, Sources, and Detectors**

by

**Bernard F Schutz, Franco Ricci**-

**arXiv**

Notes of lectures for graduate students, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons.

(

**5844**views)

**Lecture Notes on General Relativity**

by

**Sean M. Carroll**-

**University of California**

Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.

(

**11020**views)

**Mass and Angular Momentum in General Relativity**

by

**J.L. Jaramillo, E. Gourgoulhon**-

**arXiv**

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.

(

**5318**views)

**Semi-Riemann Geometry and General Relativity**

by

**Shlomo Sternberg**

Course notes for an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.

(

**13649**views)