**Deformations of Algebras in Noncommutative Geometry**

by Travis Schedler

**Publisher**: arXiv 2015**Number of pages**: 120

**Description**:

In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting. We then discuss quantization and deformation via Calabi-Yau algebras and potentials.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Notes on Noncommutative Geometry**

by

**Igor Nikolaev**-

**arXiv**

The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.

(

**1982**views)

**An informal introduction to the ideas and concepts of noncommutative geometry**

by

**Thierry Masson**-

**arXiv**

This is an extended version of a three hours lecture given at the 6th Peyresq meeting 'Integrable systems and quantum field theory'. We make an overview of some of the mathematical results which motivated the development of noncommutative geometry.

(

**5023**views)

**Very Basic Noncommutative Geometry**

by

**Masoud Khalkhali**-

**University of Western Ontario**

Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.

(

**2908**views)

**Noncommutative Geometry, Quantum Fields and Motives**

by

**Alain Connes, Matilde Marcolli**-

**American Mathematical Society**

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.

(

**6638**views)