Logo

Differential Geometry Of Three Dimensions

Large book cover: Differential Geometry Of Three Dimensions

Differential Geometry Of Three Dimensions
by

Publisher: Cambridge University Press
ISBN/ASIN: 1295658879
Number of pages: 281

Description:
The more elementary parts of the subject are discussed in Chapters I-XI. The remainder of the book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation of the subject is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Differentiable ManifoldsDifferentiable Manifolds
by
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(13860 views)
Book cover: Differential Geometry: Lecture NotesDifferential Geometry: Lecture Notes
by - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(7877 views)
Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(13839 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(17767 views)