Differential Geometry Of Three Dimensions
by C.E. Weatherburn
Publisher: Cambridge University Press 1955
ISBN/ASIN: 1295658879
Number of pages: 281
Description:
The more elementary parts of the subject are discussed in Chapters I-XI. The remainder of the book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation of the subject is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by Stefan Waner
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(23719 views)

by Gabriel Lugo - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(19973 views)

by Gilbert Weinstein - UAB
These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.
(14643 views)

by John Edward Campbell - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(7902 views)