**Lectures on the topological recursion for Higgs bundles and quantum curves**

by Olivia Dumitrescu, Motohico Mulase

**Publisher**: arXiv 2015**Number of pages**: 69

**Description**:

The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the new discovery of the relation between the following two disparate subjects: one is the topological recursion, that has its origin in random matrix theory and has been effectively applied to many enumerative geometry problems; and the other is the quantization of Hitchin spectral curves associated with Higgs bundles.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Stacks Project**

by

**Johan de Jong, et al.**

The stacks project aims to build up enough basic algebraic geometry as foundations for algebraic stacks. This implies a good deal of theory on commutative algebra, schemes, varieties, algebraic spaces, has to be developed en route.

(

**10510**views)

**Ample Subvarieties of Algebraic Varieties**

by

**Robin Hartshorne**-

**Springer**

These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

(

**7416**views)

**Analysis on Homogeneous Spaces**

by

**Ralph Howard**-

**Royal Institute of Technology Stockholm**

The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.

(

**8327**views)

**Lectures on Deformations of Singularities**

by

**Michael Artin**-

**Tata Institute of Fundamental Research**

These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.

(

**8402**views)