**Examples of differential equations, with rules for their solution**

by George A. Osborne

**Publisher**: Boston, Ginn & Company 1899**ISBN/ASIN**: 5518668287**Number of pages**: 76

**Description**:

This work has been prepared to meet a want felt by the author in a practical course on the subject, arranged for advanced students in Physics. It is intended to be used in connection with lectures on the theory of Differential Equations and the derivation of the methods of solution. Many of the examples have been collected from standard treatises, but a considerable number have been prepared by the author to illustrate special difficulties, or to provide exercises corresponding more nearly with the abilities of average students.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Linearization via the Lie Derivative**

by

**Carmen Chicone, Richard Swanson**-

**American Mathematical Society**

The proof of the Grobman-Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. We present a proof that avoids the discrete case.

(

**4966**views)

**Real Functions in One Variable: Simple Differential Equations I**

by

**Leif Mejlbro**-

**BookBoon**

Some examples of simple differential equations. The book covers separation of variables, linear differential equation of first order, the existence and uniqueness theorem, the Bernoulli differential equation, and the setup of model equations.

(

**8101**views)

**Ordinary Differential Equations and Dynamical Systems**

by

**Gerald Teschl**-

**Universitaet Wien**

This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem.

(

**11520**views)

**Periodic Solutions for Evolution Equations**

by

**Mihai Bostan**-

**American Mathematical Society**

We study the existence and uniqueness of periodic solutions for evolution equations. We analyze the one-dimensional case, then for arbitrary dimensions. We consider linear symmetric operators. We prove the same results for non-linear operators.

(

**5149**views)