Logo

Statistical Foundations of Machine Learning

Small book cover: Statistical Foundations of Machine Learning

Statistical Foundations of Machine Learning
by


Number of pages: 269

Description:
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. In particular, we focus on supervised learning problems, where the goal is to model the relation between a set of input variables, and one or more output variables, which are considered to be dependent on the inputs in some manner.

Download or read it online for free here:
Download link
(7MB, PDF)

Similar books

Book cover: Algorithms for Reinforcement LearningAlgorithms for Reinforcement Learning
by - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(6541 views)
Book cover: Reinforcement Learning and Optimal ControlReinforcement Learning and Optimal Control
by - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(7225 views)
Book cover: The LION Way: Machine Learning plus Intelligent OptimizationThe LION Way: Machine Learning plus Intelligent Optimization
by - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(31881 views)
Book cover: Machine Learning: A Probabilistic PerspectiveMachine Learning: A Probabilistic Perspective
by - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(2129 views)