Statistical Foundations of Machine Learning
by Gianluca Bontempi, Souhaib Ben Taieb
2017
Number of pages: 269
Description:
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. In particular, we focus on supervised learning problems, where the goal is to model the relation between a set of input variables, and one or more output variables, which are considered to be dependent on the inputs in some manner.
Download or read it online for free here:
Download link
(7MB, PDF)
Similar books

by Carl E. Rasmussen, Christopher K. I. Williams - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(25340 views)

by Roberto Battiti, Mauro Brunato - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(30624 views)

by Kevin Patrick Murphy - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(1540 views)

by Aaron Hertzmann - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(8103 views)