Logo

Riemannian Geometry: Definitions, Pictures, and Results

Small book cover: Riemannian Geometry: Definitions, Pictures, and Results

Riemannian Geometry: Definitions, Pictures, and Results
by

Publisher: arXiv
Number of pages: 69

Description:
A pedagogical but concise overview of Riemannian geometry is provided, in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints.

Home page url

Download or read it online for free here:
Download link
(2.4MB, PDF)

Similar books

Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(9610 views)
Book cover: Riemannian GeometryRiemannian Geometry
by
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(4024 views)
Book cover: An Introduction to Riemannian GeometryAn Introduction to Riemannian Geometry
by - Lund University
The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.
(9804 views)
Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(4580 views)