**Foundations Of Potential Theory**

by Oliver Dimon Kellog

**Publisher**: Springer 1929**ISBN/ASIN**: B004TGIBKC**Number of pages**: 406

**Description**:

The present volume gives a systematic treatment of potential functions. It takes its origin in two courses, one elementary and one advanced, which the author has given at intervals during the last ten years, and has a two-fold purpose: first, to serve as an introduction for students whose attainments in the Calculus include some knowledge of partial derivatives and multiple and line integrals; and secondly, to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications, or to the periodical literature of the day.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Little Magnetic Book**

by

**Nicolas Raymond**-

**arXiv**

'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.

(

**3348**views)

**Mathematics for Theoretical Physics**

by

**Jean Claude Dutailly**-

**arXiv**

This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.

(

**10298**views)

**Introduction to Quantum Integrability**

by

**A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos**-

**arXiv**

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.

(

**6398**views)

**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by

**Solomon I. Khmelnik**-

**MiC**

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.

(

**6731**views)