**Foundations Of Potential Theory**

by Oliver Dimon Kellog

**Publisher**: Springer 1929**ISBN/ASIN**: B004TGIBKC**Number of pages**: 406

**Description**:

The present volume gives a systematic treatment of potential functions. It takes its origin in two courses, one elementary and one advanced, which the author has given at intervals during the last ten years, and has a two-fold purpose: first, to serve as an introduction for students whose attainments in the Calculus include some knowledge of partial derivatives and multiple and line integrals; and secondly, to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications, or to the periodical literature of the day.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Topics in Spectral Theory**

by

**Vojkan Jaksic**-

**McGill University**

The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.

(

**4879**views)

**A Mathematics Primer for Physics Graduate Students**

by

**Andrew E. Blechman**

The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.

(

**17352**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**7747**views)

**Quantum Spin Systems on Infinite Lattices**

by

**Pieter Naaijkens**-

**arXiv**

These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.

(

**2856**views)