Logo

Riemannian Geometry by Luther Pfahler Eisenhart

Large book cover: Riemannian Geometry

Riemannian Geometry
by

Publisher: Princeton University Press
ISBN/ASIN: B00450KNU8
Number of pages: 316

Description:
The recent physical interpretation of intrinsic differential geometry of spaces has stimulated the study of this subject. This book aims to present the existing theory. Throughout the book constant use is made of the methods of tensor analysis and the Absolute Calculus of Ricci and Levi-Civita.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Lectures on Geodesics in Riemannian GeometryLectures on Geodesics in Riemannian Geometry
by - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(4073 views)
Book cover: Riemannian Geometry: Definitions, Pictures, and ResultsRiemannian Geometry: Definitions, Pictures, and Results
by - arXiv
A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.
(1121 views)
Book cover: Riemannian GeometryRiemannian Geometry
by - arXiv
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds.
(2766 views)
Book cover: Medians and Means in Riemannian Geometry: Existence, Uniqueness and ComputationMedians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(4852 views)