**Introduction To Machine Learning**

by Nils J Nilsson

1997**Number of pages**: 209

**Description**:

This book surveys many of the important topics in machine learning circa 1996. The intention was to pursue a middle ground between theory and practice. This book concentrates on the important ideas in machine learning -- it is neither a handbook of practice nor a compendium of theoretical proofs. The goal was to give the reader sufficient preparation to make the extensive literature on machine learning accessible.

Download or read it online for free here:

**Download link**

(2.6MB, PDF)

## Similar books

**Practical Artificial Intelligence Programming in Java**

by

**Mark Watson**-

**Lulu.com**

The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).

(

**12293**views)

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**2150**views)

**Optimal and Learning Control for Autonomous Robots**

by

**Jonas Buchli, et al.**-

**arXiv.org**

The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.

(

**388**views)

**An Introductory Study on Time Series Modeling and Forecasting**

by

**Ratnadip Adhikari, R. K. Agrawal**-

**arXiv**

This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.

(

**4606**views)