**Introduction To Machine Learning**

by Nils J Nilsson

1997**Number of pages**: 209

**Description**:

This book surveys many of the important topics in machine learning circa 1996. The intention was to pursue a middle ground between theory and practice. This book concentrates on the important ideas in machine learning -- it is neither a handbook of practice nor a compendium of theoretical proofs. The goal was to give the reader sufficient preparation to make the extensive literature on machine learning accessible.

Download or read it online for free here:

**Download link**

(2.6MB, PDF)

## Similar books

**Understanding Machine Learning: From Theory to Algorithms**

by

**Shai Shalev-Shwartz, Shai Ben-David**-

**Cambridge University Press**

This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.

(

**1028**views)

**The LION Way: Machine Learning plus Intelligent Optimization**

by

**Roberto Battiti, Mauro Brunato**-

**Lionsolver, Inc.**

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.

(

**3029**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**-

**OTexts**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**2248**views)

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**10132**views)