**Introduction To Machine Learning**

by Nils J Nilsson

1997**Number of pages**: 209

**Description**:

This book surveys many of the important topics in machine learning circa 1996. The intention was to pursue a middle ground between theory and practice. This book concentrates on the important ideas in machine learning -- it is neither a handbook of practice nor a compendium of theoretical proofs. The goal was to give the reader sufficient preparation to make the extensive literature on machine learning accessible.

Download or read it online for free here:

**Download link**

(2.6MB, PDF)

## Similar books

**A First Encounter with Machine Learning**

by

**Max Welling**-

**University of California Irvine**

The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.

(

**3340**views)

**Machine Learning for Designers**

by

**Patrick Hebron**-

**O'Reilly Media**

This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.

(

**574**views)

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**3506**views)

**Gaussian Processes for Machine Learning**

by

**Carl E. Rasmussen, Christopher K. I. Williams**-

**The MIT Press**

Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.

(

**14550**views)