Logo

Introduction To Machine Learning

Large book cover: Introduction To Machine Learning

Introduction To Machine Learning
by


Number of pages: 209

Description:
This book surveys many of the important topics in machine learning circa 1996. The intention was to pursue a middle ground between theory and practice. This book concentrates on the important ideas in machine learning -- it is neither a handbook of practice nor a compendium of theoretical proofs. The goal was to give the reader sufficient preparation to make the extensive literature on machine learning accessible.

Home page url

Download or read it online for free here:
Download link
(2.6MB, PDF)

Similar books

Book cover: A First Encounter with Machine LearningA First Encounter with Machine Learning
by - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(3340 views)
Book cover: Machine Learning for DesignersMachine Learning for Designers
by - O'Reilly Media
This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.
(574 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(3506 views)
Book cover: Gaussian Processes for Machine LearningGaussian Processes for Machine Learning
by - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(14550 views)