Logo

Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics

Small book cover: Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics

Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics
by

Publisher: arXiv
Number of pages: 121

Description:
We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research: the Metric Relativity and the Dynamical Bridge.

Home page url

Download or read it online for free here:
Download link
(800KB, PDF)

Similar books

Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(11139 views)
Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(13031 views)
Book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introductionSchwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by - arXiv
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.
(3651 views)
Book cover: Spacetime and FieldsSpacetime and Fields
by - arXiv
A self-contained introduction to the classical theory of spacetime and fields. Topics: Spacetime (tensors, affine connection, curvature, metric, Lorentz group, spinors), Fields (principle of least action, action for gravitational field, matter, etc)
(6337 views)