Logo

Manifolds: Current Research Areas

Small book cover: Manifolds: Current Research Areas

Manifolds: Current Research Areas
by

Publisher: InTech
ISBN-13: 9789535128724
Number of pages: 158

Description:
Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Principles of Differential GeometryPrinciples of Differential Geometry
by - viXra
A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.
(3090 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(8039 views)
Book cover: Global Theory Of Minimal SurfacesGlobal Theory Of Minimal Surfaces
by - American Mathematical Society
The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.
(7873 views)
Book cover: Ricci-Hamilton Flow on SurfacesRicci-Hamilton Flow on Surfaces
by - Tsinghua University
Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.
(6435 views)