Around Kolmogorov Complexity: Basic Notions and Results
by Alexander Shen
Publisher: arXiv.org 2015
Number of pages: 51
Description:
Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. This report covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness, effective Hausdorff dimension.
Download or read it online for free here:
Download link
(300KB, PDF)
Similar books

by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(25510 views)

by Felix Effenberger - arXiv
This chapter is supposed to give a short introduction to the fundamentals of information theory, especially suited for people having a less firm background in mathematics and probability theory. The focus will be on neuroscientific topics.
(7168 views)

by Robert M. Gray - Springer
The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.
(14532 views)

by John Daugman - University of Cambridge
The aims of this course are to introduce the principles and applications of information theory. The course will study how information is measured in terms of probability and entropy, and the relationships among conditional and joint entropies; etc.
(20382 views)