**Data Assimilation: A Mathematical Introduction**

by K.J.H. Law, A.M. Stuart, K.C. Zygalakis

**Publisher**: arXiv.org 2015**ISBN-13**: 9783319203256**Number of pages**: 158

**Description**:

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online.

Download or read it online for free here:

**Download link**

(2.2MB, PDF)

## Similar books

**Convex Optimization**

by

**Stephen Boyd, Lieven Vandenberghe**-

**Cambridge University Press**

A comprehensive introduction to the subject for students and practitioners in engineering, computer science, mathematics, statistics, finance, etc. The book shows in detail how optimization problems can be solved numerically with great efficiency.

(

**12219**views)

**Optimization Algorithms: Methods and Applications**

by

**Ozgur Baskan (ed.)**-

**InTech**

This book covers state-of-the-art optimization methods and their applications in wide range especially for researchers and practitioners who wish to improve their knowledge in this field. It covers applications in engineering and various other areas.

(

**2237**views)

**Notes on Optimization**

by

**Pravin Varaiya**-

**Van Nostrand**

The author presents the main concepts mathematical programming and optimal control to students having diverse technical backgrounds. A reasonable knowledge of advanced calculus, linear algebra, and linear differential equations is required.

(

**7258**views)

**Linear Optimisation and Numerical Analysis**

by

**Ian Craw**-

**University of Aberdeen**

The book describes the simplex algorithm and shows how it can be used to solve real problems. It shows how previous results in linear algebra give a framework for understanding the simplex algorithm and describes other optimization algorithms.

(

**9658**views)