Boosting: Foundations and Algorithms
by Robert E. Schapire, Yoav Freund
Publisher: The MIT Press 2014
ISBN-13: 9780262310413
Number of pages: 544
Description:
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry.
Download or read it online for free here:
Read online
(online html)
Similar books

by Max Welling - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(13608 views)

by Kevin Patrick Murphy - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(4631 views)

by Stephen Muggleton, Luc de Raedt - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(37280 views)

by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(30515 views)