Logo

Machine Learning for Designers

Small book cover: Machine Learning for Designers

Machine Learning for Designers
by

Publisher: O'Reilly Media
Number of pages: 79

Description:
This book not only introduces you to contemporary machine learning systems, but also provides a conceptual framework to help you integrate machine-learning capabilities into your user-facing designs. Using tangible, real-world examples, author Patrick Hebron explains how machine-learning applications can affect the way you design websites, mobile applications, and other software.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(5061 views)
Book cover: Algorithms for Reinforcement LearningAlgorithms for Reinforcement Learning
by - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(2073 views)
Book cover: A Survey of Statistical Network ModelsA Survey of Statistical Network Models
by - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(2459 views)
Book cover: A Course in Machine LearningA Course in Machine Learning
by - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(5988 views)