Machine Learning for Designers
by Patrick Hebron
Publisher: O'Reilly Media 2016
Number of pages: 79
Description:
This book not only introduces you to contemporary machine learning systems, but also provides a conceptual framework to help you integrate machine-learning capabilities into your user-facing designs. Using tangible, real-world examples, author Patrick Hebron explains how machine-learning applications can affect the way you design websites, mobile applications, and other software.
Download or read it online for free here:
Download link
(17MB, PDF)
Similar books

by David Barber - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23711 views)

by Kevin Patrick Murphy - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(4498 views)

by Andriy Burkov
This is the first successful attempt to write an easy to read book on machine learning that isn't afraid of using math. It's also the first attempt to squeeze a wide range of machine learning topics in a systematic way and without loss in quality.
(10151 views)

by G. James, D. Witten, T. Hastie, R. Tibshirani - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(10719 views)