**Elements of Causal Inference: Foundations and Learning Algorithms**

by J. Peters, D. Janzing, B. Schölkopf

**Publisher**: The MIT Press 2017**ISBN-13**: 9780262037310**Number of pages**: 289

**Description**:

This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems.

Download or read it online for free here:

**Download link**

(21MB, PDF)

## Similar books

**Reinforcement Learning and Optimal Control**

by

**Dimitri P. Bertsekas**-

**Athena Scientific**

The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.

(

**7802**views)

**The LION Way: Machine Learning plus Intelligent Optimization**

by

**Roberto Battiti, Mauro Brunato**-

**Lionsolver, Inc.**

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.

(

**32651**views)

**Foundations of Machine Learning**

by

**M. Mohri, A. Rostamizadeh, A. Talwalkar**-

**The MIT Press**

This is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools.

(

**5127**views)

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**14937**views)