Machine Learning for Data Streams
by Albert Bifet, et al.
Publisher: The MIT Press 2017
ISBN-13: 9780262037792
Number of pages: 288
Description:
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.
Download or read it online for free here:
Read online
(online html)
Similar books

by D. Michie, D. J. Spiegelhalter - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(29429 views)

by Jonas Buchli, et al. - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(6387 views)

by A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(9313 views)

by Dimitri P. Bertsekas - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(10689 views)