**Machine Learning for Data Streams**

by Albert Bifet, et al.

**Publisher**: The MIT Press 2017**ISBN-13**: 9780262037792**Number of pages**: 288

**Description**:

This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Introduction To Machine Learning**

by

**Nils J Nilsson**

This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.

(

**18914**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**-

**OTexts**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**3927**views)

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**4544**views)

**Lecture Notes in Machine Learning**

by

**Zdravko Markov**-

**Central Connecticut State University**

Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...

(

**4546**views)