by

Number of pages: 450

Description:
This book is directed to people who have a good understanding of the concepts of one variable calculus including the notions of limit of a sequence and completeness of R. It develops multivariable advanced calculus. In order to do multivariable calculus correctly, you must first understand some linear algebra. Therefore, a condensed course in linear algebra is presented first, emphasizing those topics in linear algebra which are useful in analysis, not those topics which are primarily dependent on row operations. Many topics could be presented in greater generality than I have chosen to do. I have also attempted to feature calculus, not topology. This means I introduce the topology as it is needed rather than using the possibly more efficient practice of placing it right at the beginning in more generality than will be needed. I think it might make the topological concepts more memorable by linking them in this way to other concepts.

(3.1MB, PDF)

## Similar books

Multivariable Calculus
by - Reed College
A text for a two-semester multivariable calculus course. The setting is n-dimensional Euclidean space, with the material on differentiation culminating in the Inverse Function Theorem, and the material on integration culminating in Stokes's Theorem.
(7163 views)
Multivariable Calculus: Applications and Theory
by - Brigham Young University
This book presents the necessary linear algebra and then uses it as a framework upon which to build multivariable calculus. This is the correct approach, leaving open the possibility that at least some students will understand the topics presented.
(3959 views)
Calculus III
by - Lamar University
These lecture notes should be accessible to anyone wanting to learn Calculus III or needing a refresher in some of the topics from the class. The notes assume a working knowledge of limits, derivatives, integration, parametric equations, vectors.
(11517 views)
Multivariable Calculus
by - National University of Singapore
Contents: Vector Functions; Functions of several variables; Limits and Continuity; Partial Derivatives; Maximum and Minimum Values; Lagrange Multipliers; Multiple Integrals; Surface Area; Triple Integrals; Vector Fields; Line Integrals; etc.
(5091 views)