 by

Number of pages: 450

Description:
This book is directed to people who have a good understanding of the concepts of one variable calculus including the notions of limit of a sequence and completeness of R. It develops multivariable advanced calculus. In order to do multivariable calculus correctly, you must first understand some linear algebra. Therefore, a condensed course in linear algebra is presented first, emphasizing those topics in linear algebra which are useful in analysis, not those topics which are primarily dependent on row operations. Many topics could be presented in greater generality than I have chosen to do. I have also attempted to feature calculus, not topology. This means I introduce the topology as it is needed rather than using the possibly more efficient practice of placing it right at the beginning in more generality than will be needed. I think it might make the topological concepts more memorable by linking them in this way to other concepts.

(3.1MB, PDF)

## Similar books Multivariable Calculus
by
The text covers Euclidean three space, vectors, vector functions, derivatives, more dimensions, linear functions and matrices, continuity, the Taylor polynomial, sequences and series, Taylor series, integration, Gauss and Green, Stokes.
(12423 views) The Calculus of Functions of Several Variables
by - Furman University
Many functions in the application of mathematics involve many variables simultaneously. This book introducses Rn, angles and the dot product, cross product, lines, planes, hyperplanes, linear and affine functions, operations with matrices, and more.
(14961 views) Calculus III
by - Lamar University
These lecture notes should be accessible to anyone wanting to learn Calculus III or needing a refresher in some of the topics from the class. The notes assume a working knowledge of limits, derivatives, integration, parametric equations, vectors.
(14553 views) Multivariable and Vector Analysis
by - Macquarie University
Introduction to multivariable and vector analysis: functions of several variables, differentiation, implicit and inverse function theorems, higher order derivatives, double and triple integrals, vector fields, integrals over paths, etc.
(12553 views)