Logo

The Geometry and Topology of Braid Groups

Small book cover: The Geometry and Topology of Braid Groups

The Geometry and Topology of Braid Groups
by

Publisher: University of Michigan
Number of pages: 30

Description:
Contents: Five definitions of the (pure) braid group; The topology of Fn(C); The integral cohomology of the pure braid group; Generalizations of PBn and their cohomology; Transfer and twisted coefficients; Stability in the cohomology of braid groups; Polynomials over Fq and the twisted Grothendieck-Lefschetz fixed point theorem.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Foliations and the Geometry of 3-manifoldsFoliations and the Geometry of 3-manifolds
by - Oxford University Press
The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
(9124 views)
Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(8783 views)
Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(3541 views)
Book cover: Knot DiagrammaticsKnot Diagrammatics
by - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.
(3863 views)