**The Geometry and Topology of Braid Groups**

by Jenny Wilson

**Publisher**: University of Michigan 2018**Number of pages**: 30

**Description**:

Contents: Five definitions of the (pure) braid group; The topology of Fn(C); The integral cohomology of the pure braid group; Generalizations of PBn and their cohomology; Transfer and twisted coefficients; Stability in the cohomology of braid groups; Polynomials over Fq and the twisted Grothendieck-Lefschetz fixed point theorem.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Foliations and the Geometry of 3-manifolds**

by

**Danny Calegari**-

**Oxford University Press**

The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

(

**9124**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**8783**views)

**An Introduction to High Dimensional Knots**

by

**Eiji Ogasa**-

**arXiv**

This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.

(

**3541**views)

**Knot Diagrammatics**

by

**Louis H. Kauffman**-

**arXiv**

This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.

(

**3863**views)