Logo

An Introduction to Probabilistic Programming

Small book cover: An Introduction to Probabilistic Programming

An Introduction to Probabilistic Programming
by

Publisher: arXiv.org
Number of pages: 218

Description:
This document is designed to be a first-year graduate-level introduction to probabilistic programming. It not only provides a thorough background for anyone wishing to use a probabilistic programming system, but also introduces the techniques needed to design and build these systems. It is aimed at people who have an undergraduate-level understanding of either or, ideally, both probabilistic machine learning and programming languages.

Home page url

Download or read it online for free here:
Download link
(3.4MB, PDF)

Similar books

Book cover: A Survey of Statistical Network ModelsA Survey of Statistical Network Models
by - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(3604 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(4465 views)
Book cover: Machine Learning for Data StreamsMachine Learning for Data Streams
by - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(1616 views)
Book cover: The Hundred-Page Machine Learning BookThe Hundred-Page Machine Learning Book
by
This is the first successful attempt to write an easy to read book on machine learning that isn't afraid of using math. It's also the first attempt to squeeze a wide range of machine learning topics in a systematic way and without loss in quality.
(963 views)