Logo

An Introduction to Probabilistic Programming

Small book cover: An Introduction to Probabilistic Programming

An Introduction to Probabilistic Programming
by

Publisher: arXiv.org
Number of pages: 218

Description:
This document is designed to be a first-year graduate-level introduction to probabilistic programming. It not only provides a thorough background for anyone wishing to use a probabilistic programming system, but also introduces the techniques needed to design and build these systems. It is aimed at people who have an undergraduate-level understanding of either or, ideally, both probabilistic machine learning and programming languages.

Home page url

Download or read it online for free here:
Download link
(3.4MB, PDF)

Similar books

Book cover: Machine Learning, Neural and Statistical ClassificationMachine Learning, Neural and Statistical Classification
by - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(29254 views)
Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(10640 views)
Book cover: Modeling Agents with Probabilistic ProgramsModeling Agents with Probabilistic Programs
by - AgentModels.org
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.
(6338 views)
Book cover: The Elements of Statistical Learning: Data Mining, Inference, and PredictionThe Elements of Statistical Learning: Data Mining, Inference, and Prediction
by - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(41680 views)