**Lectures on Nonlinear Integrable Equations and their Solutions**

by A. Zabrodin

**Publisher**: arXiv.org 2018**Number of pages**: 92

**Description**:

This is an introductory course on nonlinear integrable partial differential and differential-difference equations based on lectures given for students of Moscow Institute of Physics and Technology and Higher School of Economics.

Download or read it online for free here:

**Download link**

(760KB, PDF)

## Similar books

**Lectures on Integrable Hamiltonian Systems**

by

**G.Sardanashvily**-

**arXiv**

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.

(

**4817**views)

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**4501**views)

**Euclidean Random Matrices and Their Applications in Physics**

by

**A. Goetschy, S.E. Skipetrov**-

**arXiv**

We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.

(

**4148**views)

**Lie Groups in Physics**

by

**G. 't Hooft, M. J. G. Veltman**-

**Utrecht University**

Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.

(

**9958**views)