**Random Differential Equations in Scientific Computing**

by Tobias Neckel, Florian Rupp

**Publisher**: De Gruyter Open 2013**ISBN/ASIN**: 8376560255**Number of pages**: 650

**Description**:

This book is a holistic and self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering state-of-the-art concepts of both dynamical systems and scientific computing.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Hyperbolic Manifolds, Discrete Groups and Ergodic Theory**

by

**Curtis T. McMullen**-

**Harvard University**

Contents: Ergodic theory; Dynamics on hyperbolic surfaces; Orbit counting, equidistribution and arithmetic; Spectral theory; Mixing of unitary representations of SLnR; Amenability; The Laplacian; All unitary representations of PSL2(R); etc.

(

**8613**views)

**Chaos Theory**

by

**Kais A. Mohamedamen Al Naimee (ed.)**-

**InTech**

With a good background in nonlinear dynamics, chaos theory, and applications, the authors give a treatment of the basic principles of nonlinear dynamics in different fields. In addition, they show overlap with the traditional field of control theory.

(

**6849**views)

**Optimization and Dynamical Systems**

by

**U. Helmke, J. B. Moore**-

**Springer**

Aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control systems, signal processing, and linear algebra. The problems solved are those of linear algebra and linear systems theory.

(

**14546**views)

**The Hopf Bifurcation and Its Applications**

by

**J. E. Marsden, M. McCracken**-

**Springer**

The goal of these notes is to give a reasonably complete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to specific problems, including stability calculations.

(

**14251**views)