**Gaussian Processes for Machine Learning**

by Carl E. Rasmussen, Christopher K. I. Williams

**Publisher**: The MIT Press 2005**ISBN/ASIN**: 026218253X**ISBN-13**: 9780262182539**Number of pages**: 266

**Description**:

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**3439**views)

**Introduction to Machine Learning**

by

**Amnon Shashua**-

**arXiv**

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

(

**13377**views)

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**594**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**-

**OTexts**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**2645**views)