Logo

Gaussian Processes for Machine Learning

Large book cover: Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning
by

Publisher: The MIT Press
ISBN/ASIN: 026218253X
ISBN-13: 9780262182539
Number of pages: 266

Description:
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(26320 views)
Book cover: A Brief Introduction to Machine Learning for EngineersA Brief Introduction to Machine Learning for Engineers
by - arXiv.org
This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.
(4478 views)
Book cover: Algorithms for Reinforcement LearningAlgorithms for Reinforcement Learning
by - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(6033 views)
Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(7215 views)