Logo

Gaussian Processes for Machine Learning

Large book cover: Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning
by

Publisher: The MIT Press
ISBN/ASIN: 026218253X
ISBN-13: 9780262182539
Number of pages: 266

Description:
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Machine Learning for DesignersMachine Learning for Designers
by - O'Reilly Media
This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.
(7615 views)
Book cover: Machine Learning, Neural and Statistical ClassificationMachine Learning, Neural and Statistical Classification
by - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(29110 views)
Book cover: An Introduction to Probabilistic ProgrammingAn Introduction to Probabilistic Programming
by - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(5417 views)
Book cover: A Brief Introduction to Machine Learning for EngineersA Brief Introduction to Machine Learning for Engineers
by - arXiv.org
This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.
(7443 views)