**Gaussian Processes for Machine Learning**

by Carl E. Rasmussen, Christopher K. I. Williams

**Publisher**: The MIT Press 2005**ISBN/ASIN**: 026218253X**ISBN-13**: 9780262182539**Number of pages**: 266

**Description**:

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Introduction To Machine Learning**

by

**Nils J Nilsson**

This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.

(

**26320**views)

**A Brief Introduction to Machine Learning for Engineers**

by

**Osvaldo Simeone**-

**arXiv.org**

This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.

(

**4478**views)

**Algorithms for Reinforcement Learning**

by

**Csaba Szepesvari**-

**Morgan and Claypool Publishers**

We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.

(

**6033**views)

**Understanding Machine Learning: From Theory to Algorithms**

by

**Shai Shalev-Shwartz, Shai Ben-David**-

**Cambridge University Press**

This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.

(

**7215**views)