Logo

Reinforcement Learning: An Introduction

Large book cover: Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction
by

Publisher: The MIT Press
ISBN/ASIN: 0262193981
ISBN-13: 9780262193986
Number of pages: 445

Description:
Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Reinforcement LearningReinforcement Learning
by - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(15801 views)
Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(21660 views)
Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(5454 views)
Book cover: Machine LearningMachine Learning
by - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(11283 views)