**Reinforcement Learning: An Introduction**

by Richard S. Sutton, Andrew G. Barto

**Publisher**: The MIT Press 2017**ISBN/ASIN**: 0262193981**ISBN-13**: 9780262193986**Number of pages**: 445

**Description**:

Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Download or read it online for free here:

**Download link**

(12MB, PDF)

## Similar books

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**3518**views)

**A Brief Introduction to Machine Learning for Engineers**

by

**Osvaldo Simeone**-

**arXiv.org**

This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.

(

**3758**views)

**Bayesian Reasoning and Machine Learning**

by

**David Barber**-

**Cambridge University Press**

The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.

(

**18569**views)

**Algorithms for Reinforcement Learning**

by

**Csaba Szepesvari**-

**Morgan and Claypool Publishers**

We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.

(

**5435**views)