**Reinforcement Learning: An Introduction**

by Richard S. Sutton, Andrew G. Barto

**Publisher**: The MIT Press 2017**ISBN/ASIN**: 0262193981**ISBN-13**: 9780262193986**Number of pages**: 445

**Description**:

Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Download or read it online for free here:

**Download link**

(12MB, PDF)

## Similar books

**Information Theory, Inference, and Learning Algorithms**

by

**David J. C. MacKay**-

**Cambridge University Press**

A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.

(

**18669**views)

**Reinforcement Learning**

by

**C. Weber, M. Elshaw, N. M. Mayer**-

**InTech**

This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.

(

**14845**views)

**Introduction to Machine Learning**

by

**Alex Smola, S.V.N. Vishwanathan**-

**Cambridge University Press**

Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.

(

**3598**views)

**Statistical Learning and Sequential Prediction**

by

**Alexander Rakhlin, Karthik Sridharan**-

**University of Pennsylvania**

This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...

(

**2006**views)