**Reinforcement Learning: An Introduction**

by Richard S. Sutton, Andrew G. Barto

**Publisher**: The MIT Press 2017**ISBN/ASIN**: 0262193981**ISBN-13**: 9780262193986**Number of pages**: 445

**Description**:

Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Download or read it online for free here:

**Download link**

(12MB, PDF)

## Similar books

**Gaussian Processes for Machine Learning**

by

**Carl E. Rasmussen, Christopher K. I. Williams**-

**The MIT Press**

Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.

(

**26360**views)

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**14902**views)

**Introduction To Machine Learning**

by

**Nils J Nilsson**

This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.

(

**27637**views)

**Optimal and Learning Control for Autonomous Robots**

by

**Jonas Buchli, et al.**-

**arXiv.org**

The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.

(

**4957**views)