Logo

Reinforcement Learning: An Introduction

Large book cover: Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction
by

Publisher: The MIT Press
ISBN/ASIN: 0262193981
ISBN-13: 9780262193986
Number of pages: 445

Description:
Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(7837 views)
Book cover: Machine Learning for Data StreamsMachine Learning for Data Streams
by - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(4819 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(8257 views)
Book cover: Machine LearningMachine Learning
by - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(14404 views)