**Reinforcement Learning: An Introduction**

by Richard S. Sutton, Andrew G. Barto

**Publisher**: The MIT Press 2017**ISBN/ASIN**: 0262193981**ISBN-13**: 9780262193986**Number of pages**: 445

**Description**:

Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Download or read it online for free here:

**Download link**

(12MB, PDF)

## Similar books

**An Introduction to Probabilistic Programming**

by

**Jan-Willem van de Meent, et al.**-

**arXiv.org**

This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.

(

**5049**views)

**An Introductory Study on Time Series Modeling and Forecasting**

by

**Ratnadip Adhikari, R. K. Agrawal**-

**arXiv**

This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.

(

**12096**views)

**Practical Artificial Intelligence Programming in Java**

by

**Mark Watson**-

**Lulu.com**

The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).

(

**24942**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**9372**views)