**Information Theory, Inference, and Learning Algorithms**

by David J. C. MacKay

**Publisher**: Cambridge University Press 2003**ISBN/ASIN**: 0521642981**ISBN-13**: 9780521642989**Number of pages**: 640

**Description**:

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Generalized Information Measures and Their Applications**

by

**Inder Jeet Taneja**-

**Universidade Federal de Santa Catarina**

Contents: Shannon's Entropy; Information and Divergence Measures; Entropy-Type Measures; Generalized Information and Divergence Measures; M-Dimensional Divergence Measures and Their Generalizations; Unified (r,s)-Multivariate Entropies; etc.

(

**8514**views)

**The Limits of Mathematics**

by

**Gregory J. Chaitin**-

**Springer**

The final version of a course on algorithmic information theory and the epistemology of mathematics. The book discusses the nature of mathematics in the light of information theory, and sustains the thesis that mathematics is quasi-empirical.

(

**10507**views)

**Algorithmic Information Theory**

by

**Gregory. J. Chaitin**-

**Cambridge University Press**

The book presents the strongest possible version of GĂ¶del's incompleteness theorem, using an information-theoretic approach based on the size of computer programs. The author tried to present the material in the most direct fashion possible.

(

**10770**views)

**A Short Course in Information Theory**

by

**David J. C. MacKay**-

**University of Cambridge**

This text discusses the theorems of Claude Shannon, starting from the source coding theorem, and culminating in the noisy channel coding theorem. Along the way we will study simple examples of codes for data compression and error correction.

(

**11291**views)