**Information Theory, Inference, and Learning Algorithms**

by David J. C. MacKay

**Publisher**: Cambridge University Press 2003**ISBN/ASIN**: 0521642981**ISBN-13**: 9780521642989**Number of pages**: 640

**Description**:

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**The Limits of Mathematics**

by

**Gregory J. Chaitin**-

**Springer**

The final version of a course on algorithmic information theory and the epistemology of mathematics. The book discusses the nature of mathematics in the light of information theory, and sustains the thesis that mathematics is quasi-empirical.

(

**8510**views)

**A Short Course in Information Theory**

by

**David J. C. MacKay**-

**University of Cambridge**

This text discusses the theorems of Claude Shannon, starting from the source coding theorem, and culminating in the noisy channel coding theorem. Along the way we will study simple examples of codes for data compression and error correction.

(

**9363**views)

**Entropy and Information Theory**

by

**Robert M. Gray**-

**Springer**

The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.

(

**12834**views)

**Error-Correction Coding and Decoding**

by

**Martin Tomlinson, et al.**-

**Springer**

This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies.

(

**2613**views)