Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay
Publisher: Cambridge University Press 2003
ISBN/ASIN: 0521642981
ISBN-13: 9780521642989
Number of pages: 640
Description:
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by Inder Jeet Taneja - Universidade Federal de Santa Catarina
Contents: Shannon's Entropy; Information and Divergence Measures; Entropy-Type Measures; Generalized Information and Divergence Measures; M-Dimensional Divergence Measures and Their Generalizations; Unified (r,s)-Multivariate Entropies; etc.
(8514 views)

by Gregory J. Chaitin - Springer
The final version of a course on algorithmic information theory and the epistemology of mathematics. The book discusses the nature of mathematics in the light of information theory, and sustains the thesis that mathematics is quasi-empirical.
(10507 views)

by Gregory. J. Chaitin - Cambridge University Press
The book presents the strongest possible version of Gödel's incompleteness theorem, using an information-theoretic approach based on the size of computer programs. The author tried to present the material in the most direct fashion possible.
(10770 views)

by David J. C. MacKay - University of Cambridge
This text discusses the theorems of Claude Shannon, starting from the source coding theorem, and culminating in the noisy channel coding theorem. Along the way we will study simple examples of codes for data compression and error correction.
(11291 views)