Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay
Publisher: Cambridge University Press 2003
ISBN/ASIN: 0521642981
ISBN-13: 9780521642989
Number of pages: 640
Description:
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
by Mark M. Wilde - arXiv
The aim of this book is to develop 'from the ground up' many of the major developments in quantum Shannon theory. We study quantum mechanics for quantum information theory, we give important unit protocols of teleportation, super-dense coding, etc.
(4015 views)
by Robert M. Gray - Springer
The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.
(10215 views)
by Matt Mahoney - mattmahoney.net
This book is for the reader who wants to understand how data compression works, or who wants to write data compression software. Prior programming ability and some math skills will be needed. This book is intended to be self contained.
(4127 views)
- Wikibooks
Data compression is useful in some situations because 'compressed data' will save time (in reading and on transmission) and space if compared to the unencoded information it represent. In this book, we describe the decompressor first.
(3909 views)