**Information Theory, Inference, and Learning Algorithms**

by David J. C. MacKay

**Publisher**: Cambridge University Press 2003**ISBN/ASIN**: 0521642981**ISBN-13**: 9780521642989**Number of pages**: 640

**Description**:

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Around Kolmogorov Complexity: Basic Notions and Results**

by

**Alexander Shen**-

**arXiv.org**

Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.

(

**599**views)

**Exploring Randomness**

by

**Gregory J. Chaitin**-

**Springer**

This book presents the core of Chaitin's theory of program-size complexity, also known as algorithmic information theory. LISP is used to present the key algorithms and to enable computer users to interact with the author's proofs.

(

**10037**views)

**Information-Theoretic Incompleteness**

by

**Gregory J. Chaitin**-

**World Scientic**

In this mathematical autobiography, Gregory Chaitin presents a technical survey of his work and a non-technical discussion of its significance. The technical survey contains many new results, including a detailed discussion of LISP program size.

(

**4823**views)

**Entropy and Information Theory**

by

**Robert M. Gray**-

**Springer**

The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.

(

**10632**views)