Logo

High-dimensional Knot Theory

Large book cover: High-dimensional Knot Theory

High-dimensional Knot Theory
by

Publisher: Springer
ISBN/ASIN: 3540633898
ISBN-13: 9783540633891
Number of pages: 693

Description:
This book is devoted entirely to high-dimensional knot theory. It actually has two aims: (1) to serve as an introduction to high-dimensional knot theory, using surgery theory to provide a systematic exposition, (2) to serve as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

Home page url

Download or read it online for free here:
Download link
(3MB, PDF)

Similar books

Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(5391 views)
Book cover: Foliations and the Geometry of 3-manifoldsFoliations and the Geometry of 3-manifolds
by - Oxford University Press
The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
(8523 views)
Book cover: Surgical Methods in RigiditySurgical Methods in Rigidity
by - Springer
This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite.
(4019 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(10048 views)