**The Convenient Setting of Global Analysis**

by Andreas Kriegl, Peter W. Michor

**Publisher**: American Mathematical Society 1997**ISBN/ASIN**: 0821807803**ISBN-13**: 9780821807804**Number of pages**: 624

**Description**:

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. Many applications are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

Download or read it online for free here:

**Download link**

(4MB, PDF)

## Similar books

**Transformations of Surfaces**

by

**Luther Pfahler Eisenhart**-

**Princeton University Press**

Most of the transformations are reducible to transformations F or to transformations of the type such that a surface and a transform are focal surfaces of a W congruence. It is the purpose of this book to develop these two types of transformations.

(

**1038**views)

**Projective and Polar Spaces**

by

**Peter J. Cameron**-

**Queen Mary College**

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.

(

**11371**views)

**Ricci-Hamilton Flow on Surfaces**

by

**Li Ma**-

**Tsinghua University**

Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.

(

**8645**views)

**Global Theory Of Minimal Surfaces**

by

**David Hoffman**-

**American Mathematical Society**

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.

(

**10032**views)