Logo

The Convenient Setting of Global Analysis

Large book cover: The Convenient Setting of Global Analysis

The Convenient Setting of Global Analysis
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821807803
ISBN-13: 9780821807804
Number of pages: 624

Description:
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. Many applications are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

Home page url

Download or read it online for free here:
Download link
(4MB, PDF)

Similar books

Book cover: Cusps of Gauss MappingsCusps of Gauss Mappings
by - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(10283 views)
Book cover: Projective Differential Geometry Of Curves And SurfacesProjective Differential Geometry Of Curves And Surfaces
by - The University Of Chicago Press
Projective Differential Geometry is largely a product of the first three decades of the twentieth century. The theory has been developed in five or more different languages, by three or four well-recognized methods, in various and sundry notations.
(691 views)
Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(4802 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(11445 views)