Quasi-Projective Moduli for Polarized Manifolds

Large book cover: Quasi-Projective Moduli for Polarized Manifolds

Quasi-Projective Moduli for Polarized Manifolds

Publisher: Springer
ISBN/ASIN: 3540592555
ISBN-13: 9783540592556
Number of pages: 326

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms. Both methods together allow to prove the central result of the text, the existence of quasi-projective moduli schemes, whose points parametrize the set of manifolds with ample canonical divisors or the set of polarized manifolds with a semi-ample canonical divisor.

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Algebraic Curves: an Introduction to Algebraic GeometryAlgebraic Curves: an Introduction to Algebraic Geometry
by - Benjamin
These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
Book cover: Algebraic geometry and projective differential geometryAlgebraic geometry and projective differential geometry
by - arXiv
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
Book cover: An Introduction to Complex Algebraic GeometryAn Introduction to Complex Algebraic Geometry
by - Institut Fourier Grenoble
This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.