Quasi-Projective Moduli for Polarized Manifolds

Large book cover: Quasi-Projective Moduli for Polarized Manifolds

Quasi-Projective Moduli for Polarized Manifolds

Publisher: Springer
ISBN/ASIN: 3540592555
ISBN-13: 9783540592556
Number of pages: 326

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms. Both methods together allow to prove the central result of the text, the existence of quasi-projective moduli schemes, whose points parametrize the set of manifolds with ample canonical divisors or the set of polarized manifolds with a semi-ample canonical divisor.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Modular Functions and Modular FormsModular Functions and Modular Forms
This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.
Book cover: Algebraic Curves: an Introduction to Algebraic GeometryAlgebraic Curves: an Introduction to Algebraic Geometry
by - Benjamin
These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.
Book cover: Convex Bodies and Algebraic GeometryConvex Bodies and Algebraic Geometry
by - Springer
The theory of toric varieties describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications ...
Book cover: Algebraic Geometry over the Complex NumbersAlgebraic Geometry over the Complex Numbers
by - Purdue University
Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author maintains a reasonable balance between rigor and intuition; so it retains the informal quality of lecture notes.