**Quasi-Projective Moduli for Polarized Manifolds**

by Eckart Viehweg

**Publisher**: Springer 1995**ISBN/ASIN**: 3540592555**ISBN-13**: 9783540592556**Number of pages**: 326

**Description**:

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms. Both methods together allow to prove the central result of the text, the existence of quasi-projective moduli schemes, whose points parametrize the set of manifolds with ample canonical divisors or the set of polarized manifolds with a semi-ample canonical divisor.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Geometry Unbound**

by

**Kiran S. Kedlaya**

This is not a typical math textbook, it does not present full developments of key theorems, but it leaves strategic gaps in the text for the reader to fill in. The original text underlying this book was a set of notes for the Math Olympiad Program.

(

**10737**views)

**Lectures on Deformations of Singularities**

by

**Michael Artin**-

**Tata Institute of Fundamental Research**

These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.

(

**5352**views)

**Lectures on Expansion Techniques In Algebraic Geometry**

by

**S.S. Abhyankar**-

**Tata Institute Of Fundamental Research**

From the table of contents: Meromorphic Curves; G-Adic Expansion and Approximate Roots; Characteristic Sequences of a Meromorphic Curve; The Fundamental Theorem and applications; Irreducibility, Newton's Polygon; The Jacobian Problem.

(

**5422**views)

**Lectures on Torus Embeddings and Applications**

by

**Tadao Oda**-

**Tata Institute of Fundamental Research**

Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.

(

**5477**views)