Logo

A Second Semester of Linear Algebra

A Second Semester of Linear Algebra
by

Publisher: University of Colorado Denver
Number of pages: 236

Description:
This book is intended to be used as a text for a second semester of linear algebra either at the senior or first-year-graduate level. It is written for you under the assumption that you already have successfully completed a first course in linear algebra and a first course in abstract algebra.

Download or read it online for free here:
Download link
(960KB, PDF)

Similar books

Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(5126 views)
Book cover: Linear Algebra Review and ReferenceLinear Algebra Review and Reference
by - Stanford University
From the tabble of contents: Basic Concepts and Notation; Matrix Multiplication; Operations and Properties; Matrix Calculus (Gradients and Hessians of Quadratic and Linear Functions, Least Squares, Eigenvalues as Optimization, etc.).
(14613 views)
Book cover: Templates for the Solution of Linear SystemsTemplates for the Solution of Linear Systems
by - Society for Industrial Mathematics
The book focuses on the use of iterative methods for solving large sparse systems of linear equations. General and reusable templates are introduced to meet the needs of both the traditional user and the high-performance specialist.
(11757 views)
Book cover: The Hermitian Two Matrix Model with an Even Quartic PotentialThe Hermitian Two Matrix Model with an Even Quartic Potential
by - American Mathematical Society
The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices.
(2033 views)