**Lecture Notes in Quantum Mechanics**

by Doron Cohen

**Publisher**: arXiv 2013**Number of pages**: 285

**Description**:

These lecture notes cover undergraduate textbook topics and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.

Download or read it online for free here:

**Download link**

(2MB, PDF)

## Similar books

**Consistent Quantum Theory**

by

**Robert B. Griffiths**-

**Cambridge University Press**

This volume elucidates the consistent quantum theory approach to quantum mechanics at a level accessible to university students in physics, chemistry, mathematics, and computer science, making this an ideal supplement to standard textbooks.

(

**7912**views)

**The basic paradoxes of statistical classical physics and quantum mechanics**

by

**Oleg Kupervasser**-

**arXiv**

Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.

(

**9713**views)

**Advanced Quantum Mechanics**

by

**Freeman Dyson**-

**arXiv**

Lecture notes by Professor F. J. Dyson for a course in Relativistic Quantum Mechanics given at Cornell University in the Fall of 1951 for the students who had courses in classical mechanics, electrodynamics and non-relativistic quantum theory.

(

**4251**views)

**Quantum mechanics of many-particle systems: atoms, molecules - and more**

by

**Roy McWeeny**-

**Learning Development Institute**

Quantum mechanics of many-particle systems. Contents: The problem - and how to deal with it; Some two-electron systems; Electronic structure - the independent particle model; The Hartree-Fock method; Atoms - the building blocks of matter.

(

**5256**views)