Logo

Lecture Notes in Quantum Mechanics

Lecture Notes in Quantum Mechanics
by

Publisher: arXiv
Number of pages: 285

Description:
These lecture notes cover undergraduate textbook topics and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.

Home page url

Download or read it online for free here:
Download link
(2MB, PDF)

Similar books

Book cover: A Strict Epistemic Approach to PhysicsA Strict Epistemic Approach to Physics
by - arXiv
Here, we derive the formalism of QM from well-motivated epistemic principles. A key assumption is that in a proper physical theory, the introduction of entities or distinctions that are unknowable in principle is in conflict with the theory.
(2679 views)
Book cover: The Cellular Automaton Interpretation of Quantum MechanicsThe Cellular Automaton Interpretation of Quantum Mechanics
by - Springer
This book presents the deterministic view of quantum mechanics developed by Gerard 't Hooft. 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way. Quantum mechanics is viewed as a tool rather than a theory.
(1704 views)
Book cover: Quantum MechanicsQuantum Mechanics
by - Utah State University
This text will survey the foundations of quantum mechanics, basic techniques for its application to the real world, and a number of standard examples. It is assumed that you have already had a previous undergraduate course in quantum mechanics.
(7457 views)
Book cover: Quantum FluctuationsQuantum Fluctuations
by - Princeton University Press
This book deals with the kinematics of diffusion processes. The dynamical equations are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms.
(10921 views)